06-05-Model-Free Value Prediction V02 (1).pdf
Temporal Difference
Bootstraping
import random
import numpy as np
class GridWorld():
def __init__(self):
self.x=0
self.y=0
def step(self, a):
# 0번 액션: 왼쪽, 1번 액션: 위, 2번 액션: 오른쪽, 3번 액션: 아래쪽
if a==0:
self.move_left()
elif a==1:
self.move_up()
elif a==2:
self.move_right()
elif a==3:
self.move_down()
reward = -1 # 보상은 항상 -1로 고정
done = self.is_done()
return (self.x, self.y), reward, done
def move_right(self):
self.y += 1
if self.y > 3:
self.y = 3
def move_left(self):
self.y -= 1
if self.y < 0:
self.y = 0
def move_up(self):
self.x -= 1
if self.x < 0:
self.x = 0
def move_down(self):
self.x += 1
if self.x > 3:
self.x = 3
def is_done(self):
if self.x == 3 and self.y == 3:
return True
else :
return False
def get_state(self):
return (self.x, self.y)
def reset(self):
self.x = 0
self.y = 0
return (self.x, self.y)
class Agent():
def __init__(self):
pass
def select_action(self):
coin = random.random()
if coin < 0.25:
action = 0
elif coin < 0.5:
action = 1
elif coin < 0.75:
action = 2
else:
action = 3
return action
def main():
#TD
env = GridWorld()
agent = Agent()
data = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
gamma = 1.0
reward = -1
alpha = 0.01
for k in range(50000):
done = False
while not done:
x, y = env.get_state()
action = agent.select_action()
(x_prime, y_prime), reward, done = env.step(action)
x_prime, y_prime = env.get_state()
data[x][y] = data[x][y] + alpha*(reward+gamma*data[x_prime][y_prime]-data[x][y])
env.reset()
for row in data:
print(row)
if __name__ == '__main__':
main()