Model ์ด๋?
Model Free ๊ฐ๋
06-05-Model-Free Value Prediction V02.pdf
import random
import numpy as np
class GridWorld():
def __init__(self):
self.x=0
self.y=0
def step(self, a):
# 0๋ฒ ์ก์
: ์ผ์ชฝ, 1๋ฒ ์ก์
: ์, 2๋ฒ ์ก์
: ์ค๋ฅธ์ชฝ, 3๋ฒ ์ก์
: ์๋์ชฝ
if a==0:
self.move_left()
elif a==1:
self.move_up()
elif a==2:
self.move_right()
elif a==3:
self.move_down()
reward = -1 # ๋ณด์์ ํญ์ -1๋ก ๊ณ ์
done = self.is_done()
return (self.x, self.y), reward, done
def move_right(self):
self.y += 1
if self.y > 3:
self.y = 3
def move_left(self):
self.y -= 1
if self.y < 0:
self.y = 0
def move_up(self):
self.x -= 1
if self.x < 0:
self.x = 0
def move_down(self):
self.x += 1
if self.x > 3:
self.x = 3
def is_done(self):
if self.x == 3 and self.y == 3:
return True
else :
return False
def get_state(self):
return (self.x, self.y)
def reset(self):
self.x = 0
self.y = 0
return (self.x, self.y)
class Agent():
def __init__(self):
pass
def select_action(self):
coin = random.random()
if coin < 0.25:
action = 0
elif coin < 0.5:
action = 1
elif coin < 0.75:
action = 2
else:
action = 3
return action
def main():
env = GridWorld()
agent = Agent()
data = [[0,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,0]]
gamma = 1.0
reward = -1
alpha = 0.001
for k in range(50000):
done = False
history = []
while not done:
action = agent.select_action()
(x,y), reward, done = env.step(action)
history.append((x,y,reward))
env.reset()
cum_reward = 0
for transition in history[::-1]:
x, y, reward = transition
data[x][y] = data[x][y] + alpha*(cum_reward-data[x][y])
cum_reward = reward + gamma*cum_reward
for row in data:
print(row)
if __name__ == '__main__':
main()